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List of relevant abbreviations 

ADME: Absorption, Distribution, Metabolism, Excretion 

B: Bioaccumulation 

CA: Concentration based on actual emission rate estimate  

CU: Concentration based on unit emission rate 

CV: Contribution to variance 

Cf: Confidence factor 

EA: Actual emission rate  

EU: Unit emission rate 

EPI Suite: Estimation Program Interface Suite 

EU TGD: European Union Technical Guidance Document  

H: Henry’s law constant 

HL: Half-life 

iR: Intake rate 

iF: Intake fraction 

K: Kelvin 

KAW: air-water partition coefficient 

KOA: octanol-air partition coefficient 

KOW: octanol-water partition coefficient 

M: Molar mass 

MOE: Mode-of-entry 

NHANES: National Health and Nutrition Examination Survey 

Pi: Input parameter 

P: Persistent 

QSA(P)R: Quantitative Structure-Activity (Property) Relationship 

R: Gas law constant 

RAIDAR: Risk Assessment IDentification And Ranking 

S: Sensitivity 

SMILES: Simplified Molecular Input Line Entry System 

T: Toxicity 

US EPA: United States Environmental Protection Agency 
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Abstract 

Background: Scientific and regulatory efforts strive to identify chemicals that may cause harmful 

effects to humans and the environment; however, due to the large number of chemicals requiring 

evaluation and limited data and resources, prioritization is challenging.  

Objectives: Prioritize chemicals for exposure and exposure potential and obtain a quantitative 

perspective on research needs to better address uncertainty in screening assessments. 

Methods: We used a multimedia mass balance model to prioritize more than 12,000 organic 

chemicals using four far-field human exposure metrics. The propagation of variance 

(uncertainty) in key chemical information used as model input for calculating exposure metrics 

was quantified.  

Results: Modeled human concentrations (ng/g) and intake rates (ng/d) span approximately 17 

and 15 orders of magnitude, respectively. Estimates of exposure potential using human 

concentrations (ng/g) and a unit emission rate span approximately 13 orders of magnitude and 

intake fractions (dimensionless) span 7 orders of magnitude. The actual chemical emission rate 

(kt/y) contributes the greatest variance (uncertainty) in exposure estimates. The human 

biotransformation half-life (h) is the second greatest source of uncertainty in estimated 

concentrations. In general, biotransformation and biodegradation half-lives (h) are greater 

sources of uncertainty in modeled exposure and exposure potential than chemical partition 

coefficients.  

Conclusions: Mechanistic exposure modeling is able to screen and prioritize large numbers of 

chemicals. By including uncertainty analysis and uncertainty in chemical information in the 

exposure estimates, these methods can help to identify and address the important sources of 

uncertainty in human exposure and risk assessment in a systematic manner. 
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Introduction 

Chemical assessment programs strive to identify and regulate chemicals that may cause 

harmful effects to humans and ecosystems. Tens of thousands of chemicals require evaluation; 

however, data and resources are limited (Muir and Howard 2006). In particular, monitoring data 

that could be used in exposure assessment are available for about 1-2% of the chemicals for 

which there are at least some toxicity data (Egeghy et al. 2012). The Canadian Domestic 

Substances List categorization highlighted that of the approximately 11,300 listed organic 

chemicals merely: (i) 3% have measured bioaccumulation data (only in fish), (ii) 4% have 

measured half-lives in air (based on laboratory simulated reactions), and (iii) 12 chemicals have 

measured biodegradation half-lives in water, soil or sediment (Arnot and Gobas 2006; 

Environment Canada 2006). Furthermore, it is not possible to measure all chemicals in all media 

to which humans and ecological receptors are exposed. These data gaps necessitate the 

development and application of conceptual, mass balance, and Quantitative Structure-Activity 

(Property) Relationships (QSA(P)Rs) models. With so many chemicals requiring assessment and 

such extensive data gaps it is difficult to determine which chemicals pose the greatest exposure 

and risk and what chemical information contributes the greatest uncertainty in these assessments.  

Methods to screen and prioritize chemicals for more comprehensive evaluations include 

“separate” persistence, bioaccumulation and toxicity (PBT) classification categories and 

“holistic” multimedia, multi-pathway mass balance exposure and risk assessment models that 

simulate key processes in the source-receptor relationship. The PBT method employs multiple 

bright-line pass/fail criteria and mass balance and QSA(P)R models for data generation. The 

pass/fail criteria are variable (i.e. dependent on the regulatory program) and the multiple binary 

scoring results reduce consistency and transparency in decision-making (Arnot and Mackay 
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2008; van Wezel and Jager 2002). Although uncertainty is prevalent due to data gaps and the 

necessary reliance on models (Arnot and Gobas 2006; Zhang et al. 2010), the PBT pass/fail 

methods do not provide guidance for addressing uncertainty. In contrast, “holistic” mass balance 

exposure models provide single numerical values for screening and priority setting (e.g. chemical 

intake fraction (Bennett et al. 2002)) and they can also include sensitivity and uncertainty 

analyses (Hertwich et al. 1999; Huijbregts et al. 2000; McKone 1994) using the same basic 

chemical information included in PBT methods (i.e. partitioning and degradation rate data). 

Exposure models also provide the opportunity to better understand key mechanistic processes in 

the source-receptor relationship and the model predictions (hypotheses) can be evaluated with 

monitoring data (tested) (Cowan-Ellsberry et al. 2009; Sheldon and Cohen Hubal 2009). Finally, 

while the actual chemical emission rate clearly influences exposure and risk, it is not directly 

included in a PBT assessment. 

In the present study we describe the parameterization and application of a mass balance 

model to screen and prioritize more than 12,000 organic chemicals using four far-field human 

exposure and human exposure potential assessment metrics. The propagation of uncertainty in 

model input parameters is included through the model calculations, thus providing uncertainty 

estimates for the four assessment metrics. A primary objective is to use these results as a case 

study to obtain a better quantitative perspective of the relative uncertainties in chemical 

information required for screening-level exposure and risk assessment. We consider external and 

internal human exposure metrics and discuss recommendations for future research needs to 

improve assessments. 
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Methods 

Multimedia, multi-pathway far-field human exposure models and metrics. Figure 1 

illustrates far-field human exposure concepts and four assessment metrics. Far-field exposures 

are the result of human contact with chemicals in outdoor air, drinking water and food as a result 

of general chemical use and release throughout the chemical life-cycle and subsequent chemical 

fate and transport in the physical environment (air, water, soil and sediment) and food web 

bioaccumulation. In the present study we assumed that there were no losses or additions of 

chemical to food as a result of processing and preparation (e.g. packaging, cooking, washing) 

and that all food sources originate in the same regional environment in which the human resides. 

Near-field exposures such as dermal, indoor, occupational, industrial, and direct exposure 

pathways from consumer use (e.g. application of personal care products) are not considered in 

this case study.  

Various studies have proposed metrics for assessing human exposure and human 

exposure potential, e.g. (Arnot et al. 2010; Bennett et al. 2002; Cowan-Ellsberry et al. 2009). 

Exposure metrics based on actual chemical emission rates (EA; e.g. kg/h or ng/d) provide actual 

exposure estimates such as chemical concentrations in humans (CA; ng/g) and human intake rates 

(iRA; ng/d). For each exposure pathway (i.e. air, food and water), the intake rate is the product of 

the environmental medium intake, or contact rate, (e.g. inhalation rate, Gi; g/d) and the chemical 

concentration in the corresponding medium (e.g. concentration in air Ci; ng/g). Aggregate 

exposures are the sum of all of the exposure pathways considered in the assessment. Intake rates 

do not consider chemical absorption, distribution, metabolism and excretion (ADME) processes 

in the receptor of interest; however, internal concentrations do consider ADME processes. Actual 

exposure estimates are applicable in risk-based chemical assessments by comparing 
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concentrations or intake rates with concentrations or rates of intake associated with effect or no 

effect levels; however, it is often difficult to obtain reliable actual emission rate information. A 

consistent, arbitrary unit emission rate (EU; e.g. 1 ng/d) for all chemicals can be used to provide 

estimates of relative exposure potential for screening and prioritizing chemicals in a hazard-

based context. The chemical intake fraction (iF; dimensionless, or ng-intake/ng-emission) and 

the unit emission rate based concentration (CU; ng/g) are examples of relative exposure potential 

metrics that are independent of the actual chemical emission rate. We selected the iF, iRA, CU, 

and CA metrics to consider a range of possible far-field human exposure assessment objectives. 

Various multimedia, multi-pathway, mass balance exposure models can be used to 

calculate some of these far-field human exposure metrics, e.g. (Arnot and Mackay 2008; Czub 

and McLachlan 2004; Huijbregts et al. 2000; van Wezel and Jager 2002). We used the Risk 

Assessment IDentification And Ranking (RAIDAR) Ver.2.0 model because it calculates all four 

exposure metrics of interest and it allows for the inclusion of chemical-specific 

biotransformation rate information for vertebrate species, a process that has been shown to 

strongly affect exposures (Arnot et al. 2010; McLachlan et al. 2011). The primary objective of 

RAIDAR is to provide a consistent evaluative framework for risk and exposure information for 

priority setting objectives and for comparative chemical assessments. The model is described in 

detail elsewhere (Arnot and Mackay 2008; Arnot et al. 2010). Briefly, RAIDAR combines user-

supplied information on chemical emissions and properties with a mechanistic description of 

chemical phase distribution, inter-media transport and degradation processes to calculate 

concentrations in air, water, soil and sediment of a generic regional-scale (100,000 km
2
) 

environment. Using these concentrations in the physical environment, RAIDAR calculates 

bioaccumulation in aquatic, terrestrial and agricultural food webs to estimate exposures of, and 
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potential risks to, humans and representative ecological species (e.g. plants, invertebrates, fish, 

birds and mammals). The model assumes chemical emissions are continuous from diffuse, non-

point sources and losses from the regional environment can include reaction (degradation in 

environmental media) and advection (e.g. outflow in air and water, and burial in sediment). 

Primary producers and invertebrates bioconcentrate chemicals from their ambient environment 

of air, water, soil, or sediment whereas vertebrates bioaccumulate chemicals from their ambient 

environment and from their diet. The bioaccumulation models consist of a mass balance equation 

formulated over a single compartment for each vertebrate species (i.e. including humans) 

accounting for major processes of chemical uptake (i.e. respiration, drinking water and dietary 

exposures for potential biomagnification) and elimination (e.g. respiration, fecal egestion, 

urinary excretion and biotransformation). RAIDAR calculates concentrations in outdoor air, 

water, soil, sediment and biota, including humans, using either EU or EA for a particular 

simulation. For this case study, RAIDAR Ver.2.0 was coded in Visual Basic for Applications 

hosted in Microsoft Excel™ to quantify the propagation of uncertainty in chemical properties 

(model input parameters) in the calculated iRA, iF, CU, and CA exposure metrics (model output). 

Case study chemicals. We compiled a database of 12,619 organic chemicals including organic 

chemical substances with reported production in Europe, US, Canada, Japan and other 

Organization for Economic Co-operation and Development countries. This database comprises a 

broad range of chemical properties and production volumes and is considered to represent much 

of the diversity of current use organics (see Supplemental Material, Section 1 for details). 

Model parameterization and high throughput screening applications.  The RAIDAR model 

input parameters required for assessing exposure potential are: molar mass (M; g/mol), octanol-

water partition coefficient (KOW; dimensionless), Henry’s law constant (H; Pa-mol/m
3
), 
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degradation half-lives in air, water, soil and sediment (HLs; h) and primary biotransformation 

half-lives in vertebrates (HLs; h). The dimensionless air-water partition coefficient (KAW) is 

calculated by dividing H by the gas law constant (R; 8.314 Pa.m
3
/(mol.K)) and absolute system 

temperature (T; e.g. 298 K). The model uses the octanol-air partition coefficient (KOA; 

dimensionless) for processes such as aerosol-air partitioning and bioaccumulation in air-

breathing organisms; however, KOA is not a required input parameter as it is calculated internally 

by the model as KOW / KAW. Chemical mode-of-entry information is required (i.e. relative percent 

release of chemical to air, water and soil) for Level III (steady state, non-equilibrium) fate 

simulations. For assessments of actual exposure, an estimate of the regional scale actual emission 

rate (EA; e.g. kt/y) is also required.  

Table 1 summarizes the range and median values for selected model input parameters. A 

valuable source of information for obtaining chemical partitioning properties and reaction half-

lives for chemical screening is the United States Environmental Protection Agency’s Estimation 

Program Interface Suite (EPI Suite) software program (U.S. EPA 2011). The software is free 

and publicly available and requires only chemical structural information (i.e. Simplified 

Molecular Input Line Entry System or SMILES notations (Weininger 1988)) for searching large 

databases of measured information and generating QSA(P)R predictions. We selected measured 

values for chemical properties preferentially over QSA(P)R estimates. There are technical and 

analytical challenges associated with accurately measuring certain chemical properties (i.e. 

substances with low vapor pressure or low water solubility). For some chemicals the QSA(P)R 

predicted properties are beyond the domain of measured values used to develop and test the 

QSA(P)Rs. While it is possible for properties to exist beyond the range of currently measured 

domains, these QSA(P)R predictions may have substantial errors. As a part of this case study we 
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identified and counted predicted partitioning properties outside of the current measurement 

domains. We replaced predicted properties outside of the measured domains with selected 

measured “maxima” or “minima” values for these simulations. For ionogenic organics EPI 

Suite Ver. 4.1 provides property estimates for the neutral species only. Due to a general lack of 

data (i.e. pKas) and publicly available high-throughput models for parameterizing diverse types 

of ionic chemicals, we did not consider dissociation in this case study. Further details on the 

selection of partitioning properties are in the Supplemental Material, Section 2.1. Further details 

on the selection of degradation half-lives are in the Supplemental Material, Section 2.2. 

We used a unit emission rate (EU) of 1 kg/h for all chemicals to estimate human exposure 

potential (e.g. iF, CU). Estimated “actual” regional scale emission rates (EA) are needed for 

estimates of actual exposures and Level III fate calculations require mode-of-entry information. 

We used production volume estimates and the European Union Technical Guidance Document 

(EU TGD) emission factor scenarios (EC 2003) to estimate EA and chemical mode-of-entry to 

the environment (see Supplemental Material,  Section 2.3). The EU TGD emission factors 

(Supplemental Material, Table S-1) represent “default” recommended values and are assumed to 

provide information for the relative release of chemical to air, water and soil using physical-

chemical properties alone. We assumed that the chemicals are used widely and that advective 

loss from one regional environment is compensated for by advective inflow from a neighboring 

region. The advective flow residence times in air and water were set to 10
11
 h to parameterize the 

model to satisfy this assumption. 

Sensitivity and uncertainty analysis. Exposure estimates are subject to uncertainty whether the 

data are measured or modeled. We used an analytical method to estimate uncertainty in our 

modeled data because of its relative simplicity and because the uncertainty in most of the 
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chemical parameters can only be approximated using QSA(P)Rs, models and expert judgment 

due to a lack of data (MacLeod et al. 2002; Slob 1994). The sensitivity (S) of a model input 

parameter quantifies the change in model output as a function of a defined change in the model 

input parameter. For example, the sensitivity (S) of an input parameter (Pi), such as KOW, on 

model output, such as iF, can be approximated as: 

 

S = (∆iF/ iF)/(∆P/Pi)  [1] 

 

where ∆iF is the change in the iF value and ∆P is a fixed change to a selected input parameter 

value (e.g. 0.1% change in KOW). The contribution to variance (uncertainty) of the chemical input 

parameters on an exposure calculation for that particular chemical (CVi) can be evaluated as a 

function of the variance (uncertainty) σ2
i and sensitivity (Si) of the individual input parameters 

(Pi) for all model input parameters (n) for that particular chemical as: 

 

  [2] 

 

We used confidence factors (Cf), also referred to as distribution factors (Slob 1994), to quantify 

uncertainty (variance) in model input parameters. The Cf is a readily interpretable expression of 

the variance in a log-normally distributed parameter. A Cƒ of 10 suggests that 95% of all of the 

values in the distribution are within 10 and 0.1 times the median value. A 95% probability for a 

CV i =
σ Pi

2 SPi
2

σ Pk

2 SPk
2

k=1

n

∑
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log-normally distributed parameter X with a median M is expressed as (MacLeod et al. 2002; 

Slob 1994): 

 

    [3] 

Thus, the variance in the log-normal distribution increases with an increase in Cƒ. The use of 

Cƒs “is particularly useful when data are scarce and the magnitude of the uncertainty can only be 

roughly quantified by giving approximate lower and upper bounds using expert judgment” (Slob 

1994). Confidence factors can be calculated from estimates of variance such as standard 

deviations for log-transformed, lognormal distributions (σlogX; base 10 logarithm) as (MacLeod 

et al. 2002; Slob 1994): 

 

Cƒ = e (1.96 σlogX ln(10)) [4] 

 

We assumed model input parameters to be log-normally distributed, and due to data gaps, 

we assigned Cƒs using professional judgement. We used standard deviations from the EPI 

Suite QSA(P)R training and testing sets to guide the application of professional judgment for 

calculating and assigning screening-level Cfs using Equation 4. In general, the relative 

uncertainty in chemical information progresses as: measured data < predicted data “within the 

defined domain” < predicted data “outside the defined domain”. Table 1 summarizes the range 

and medians for Cfs for model input parameter categories (see Supplemental Material, Section 2 

for further details). 

probability
M

Cf
< X < Cf ⋅ M

 
 
 

 
 
 

= 0.95
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Results 

Figure 2 illustrates the screening and ranking of 12,619 organic substances based on four 

far-field exposure and exposure potential metrics. The bottom two panels show results using 

estimates of actual emission rates (i.e. CA and iRA) and the top two panels show results using a 

consistent unit emission rate for all chemicals (i.e. CU and iF). The upper tails of the rankings 

suggest that all methods have the capacity to differentiate chemicals with relatively higher 

exposure and exposure potential from all chemicals in the database; however, the actual exposure 

metrics show larger ranges than the comparative exposure potential metrics because of the 

greater range of possible EA values. Estimates of actual exposures span approximately 17 and 15 

orders of magnitude for CA and iRA, respectively. Estimates of exposure potential span 

approximately 13 and 7 orders of magnitude for CU and iF, respectively.  

Figure 3 provides a statistical summary of CV for modeled exposure metrics (output) as a 

function of model input parameters for all chemicals. Clearly the greatest contribution to 

uncertainty in estimates of actual internal and external human exposures is the estimate of EA. 

The uncertainty in EA is particularly dominant for the iRA calculations. These results also reflect 

that the sensitivity of the model exposure calculations to the actual emission rate is 1. In other 

words, the response of the model is linear for this input parameter so a two-fold change in EA 

results in a two-fold change in CA and iRA. In general, the primary biotransformation HL in 

mammals is the input parameter with the second greatest contribution to variance in CA 

calculations. This is because the primary biotransformation HL in the human is a key 

determinant of the overall residence time in the body for many parent chemicals. Chemicals with 
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log KOW > 2 and log KOA > 6 have high bioaccumulation potential in humans when 

biotransformation is assumed to be negligible (Czub and McLachlan 2004; Kelly et al. 2007) and 

biotransformation is a key factor for reducing bioaccumulation potential over a wide range of 

chemical partitioning properties (McLachlan et al. 2011). For more water soluble and volatile 

chemicals urinary excretion and respiration can be relatively quicker routes of elimination, thus 

for these types of chemicals HLBIO is not as important in the calculation of CA. iRA does not 

consider absorption, biotransformation or elimination in the humans; however, in the iRA 

calculation, these processes are considered in vertebrates that are part of the agricultural food 

web and thus part of the human diet. 

The top two panels in Figure 3 refer to unit emission metrics of human exposure potential 

(i.e. are independent of EA). For CU, HLBIO-mammal is generally the greatest source of 

uncertainty in the calculation. For the same reasons discussed earlier for CA, the calculation of 

CU is also often sensitive to the biotransformation HL input parameter. In general terms, the 

degradation HL in water, the biotransformation HL in fish and KOW are other parameters 

contributing the most variance in CU calculations. For iF simulations a number of input 

parameters contribute to variance including (in general order of magnitude): degradation HL in 

water, biotransformation HL in fish, degradation HL in air, KOW and KAW. For certain chemicals 

the CV on iF can be 1 for most input parameters (as noted by the maxima points), the only 

exceptions being for the degradation HLs in soil and sediment. These two input parameters are 

generally shown to have low CV in human exposures. In general, KOW is shown to have a greater 

CV in exposure metrics than KAW despite a relatively greater degree of uncertainty in KAW than in 

KOW (Table 1). 
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Figure 4 summarizes the model output Cfs for the four exposure metrics. The general 

trend of relative uncertainty in model calculations is: CA > iRA > CU > iF. This order 

predominantly reflects the greater level of uncertainty associated with estimating exposure rather 

than exposure potential as a result of the high uncertainties in EA. Calculations for CA are 

generally more uncertain than calculations for iRA because of the additional uncertainty 

associated with biotransformation HLs in humans. On average the range associated with a 95% 

probability in CA covers 8 orders of magnitude. By comparison, on average the range associated 

with a 95% probability in iF covers about 3-4 orders of magnitude. It is noted that approximately 

one-third of the chemicals in the case study have predicted physical-chemical partitioning 

property estimates that are outside of the selected domains. 

Discussion  

Chemical screening and prioritization. Regulatory and scientific agencies such as the US EPA 

and the National Research Council recognize the need to develop, apply and evaluate a systems 

approach that fully integrates exposure and toxicity information in a holistic framework for risk 

assessment (Cohen Hubal 2009). Such an approach is envisioned to identify and reduce 

uncertainties in current risk assessment approaches (Sheldon and Cohen Hubal 2009). We 

compiled the chemical data required to screen and evaluate more than 12,000 organic chemicals 

using four metrics for far-field human exposure and exposure potential calculated with a mass 

balance multimedia model and included the propagation of uncertainty in chemical property data 

on exposure estimates. The mass balance modelling approach provides single values for risk and 

hazard assessment and prioritization rather than multiple binary PBT pass/fail scores that are 

difficult to interpret in terms of risk and prioritization and do not address uncertainties in the data 

(Arnot and Mackay 2008; Zhang et al. 2010). The mass balance approach may therefore be more 
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effective when seeking possible alternatives for chemical replacement (Lakind and Birnbaum 

2010; Lavoie et al. 2010) because uncertainty in chemical information, particularly emission 

rates, can be included and the results compared. 

An internal exposure metric may be the most biologically and toxicologically relevant, 

since the site of toxic action is typically located inside the body. Calculated human 

concentrations can be integrated with toxicity data such as tissue concentrations providing direct 

linkages to high throughput toxicity test data for screening-level risk assessment (Judson et al. 

2011). Biomonitoring data, such as those obtained through National Health and Nutrition 

Examination Survey (NHANES), are valuable sources of exposure information for science and 

regulatory purposes. Exposure models that include human concentrations can more fully (i) 

maximize the value of biomonitoring data by quantitatively linking emission rates and exposure 

pathways to internal doses (Woodruff et al. 2011) and (ii) complete model evaluations through 

comparisons with biomonitoring data (Cowan-Ellsberry et al. 2009), i.e. hypothesis testing. It 

should be recognized, however, that internal exposure estimates such as C require chemical-

specific information on absorption and clearance from the body (i.e. metabolic 

biotransformation). Most notably, the biotransformation HL parameter generally contributes a 

substantial amount of uncertainty in the calculated human concentrations. 

We emphasize that the screening results for “actual” exposures should be interpreted with 

some skepticism. Due to the complex issues in estimating EA, a high level of error is expected 

and these errors in some cases may be beyond what we have attempted to quantify. In particular, 

the EU TGD emission scenarios are considered “realistic worst case” for screening-level 

objectives; therefore, the “actual” exposure estimates are expected to be conservative, 
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particularly for high production volume chemicals that are used as intermediates or not released 

to the environment following the assumed emission scenario estimates.  

The unit emission based metrics are useful when few or no emissions data are available. 

The screening results using CU and iF provide guidance for exposure hazard potential and the 

relative information can be useful for benchmarking chemicals before considering industrial 

production (Cowan-Ellsberry et al. 2009). There are many chemicals in the case study that are 

consistently ranked relatively high or relatively low by all exposure metrics; however, 

correlations in ranking results are not strong, which confirms that the metrics provide different 

information. In summary, there are trade-offs in using different metrics for far-field human 

exposure assessment; the greater discriminatory power of the metrics with more toxicologically 

relevant (internal doses) and more “realistic” exposure assessment objectives (i.e. using 

estimates of actual emission rates rather than unit emission rates) are accompanied by greater 

uncertainty.  

Addressing uncertainty. Different types of uncertainty exist (Finkel 1990). We consider 

estimates of the uncertainty in chemical information only and do not consider variability related 

to numerous physical and biological processes. The results are a function of the chemical 

properties, the model, simulation assumptions (e.g. no dissociation), parameters used to 

characterize the environmental and human conditions in the model and the professional 

judgement applied to quantify uncertainty in chemical information (input parameters). Clearly, 

changes to the model or simulation assumptions will result in some changes in the relative 

ranking and the large scale uncertainty analysis. For example, the representative human dietary 

preferences in the model are constant and the assumed mode-of-entry information is based on 

default EU TGD emissions scenarios. Due to a lack of data and models for parameterizing and 
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simulating far-field human exposures to diverse types of ionogenic chemicals, we did not include 

dissociation in this case study. The implications of this assumption are unquantifiable errors in 

the exposure estimates for chemicals that are appreciably dissociated at environmental and 

physiological pH. There is a general need to improve measurements, models and monitoring data 

for ionogenic chemicals. High-throughput screening-level “near-field” human exposure models 

are not currently available, but are required to better screen human exposures and expand the 

mass balance framework to more fully quantify source-to-dose relationships. 

Approximately 33% of the chemicals have predicted partitioning properties outside of the 

range of current measurements. This suggests that a large number of chemicals that are being 

evaluated may have highly uncertain predicted properties; however, there is no regulatory 

guidance for assessing such chemicals and for addressing the uncertainty of these predictions. It 

is stressed that the Cfs we selected here to address uncertainty in chemical information (model 

input parameters) necessarily required professional judgment due to substantial data gaps in 

measured and predicted chemical information. Due to the data gaps and the current screening-

level approach, some co-dependence in uncertainty in model input parameters may occur in 

some instances; however, given the overall limitations in obtaining robust uncertainty estimates 

for all input parameters and the generally large uncertainties in model output, the issue of co-

dependence is best addressed at higher tier assessments or when better data are available to 

characterize uncertainty. We expect uncertainty estimates for information used in chemical 

evaluations to evolve with the availability of more measured data and improved measurement 

techniques, better QSA(P)R models and experience.   

Conclusions 
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This study has provided a quantitative perspective on the uncertainty in exposure data to 

better address uncertainty in screening-level exposure and risk assessment. The results indicate 

that more measured data and models are needed for environmental degradation HLs and 

biotransformation HLs. If uncertainties in other chemical properties are reduced through refined 

property measurement and QSA(P)R development, chemical assessments will still be highly 

uncertain due to the prevailing contribution to uncertainty of EA. While continued academic 

research may result in some modest improvements in estimating EA and the associated 

uncertainty in this parameter, any substantial improvements to reduce this key source of 

uncertainty in exposure and risk assessment will ostensibly require coordinated efforts with the 

chemical regulatory, manufacturing and use communities. It must be recognized that the same 

general level of uncertainty in screening and prioritization results shown in this case study can be 

expected using other methods (i.e. PBT methods or other mass balance models). Improved 

information on chemical production and usage and addressing key sources of uncertainty such as 

biotransformation and environmental degradation HLs and continued model refinement are 

required to improve chemical screening and prioritization efforts.  
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Tables 

Table 1: Summary of the range and medians of model input parameters and associated 

confidence factors (Cf) for 12,619 organic substances. 

Model Input Parameter 

(units) 

Range (and median) of 

input parameters 

Range (and median) of Cf 

for model input parameters 

M 
a
 (g/mol) 16 – 1580 (240) N/A 

KAW 
a
 (dimensionless) 10

-12
 – 10

3
 (1.2×10

-6
) 6 – 300 (100) 

KOW 
a
 (dimensionless) 10

-4
 – 10

9
 (1.3×10

3
) 3 – 30 (10) 

HL-Air (h) 4.7×10
-4
 – 1.3×10

6
 (4.8) 10 – 100 (10) 

HL-Water (h) 12 – 9.0×10
4
 (570) 11 – 3,200 (14) 

HL-Soil (h) 23 – 1.8×10
5
 (1,100) 22 – 6,400 (27) 

HL-Sediment (h) 100 – 8.1×10
5
 (5,200) 33 – 9,700 (40) 

HLBIO-Fish (h) 0.42 – 6.0×10
11
 (16) 10 – 15 (15) 

HLBIO-Avian/Mammals (h) 0.42 – 6.0×10
11
 (16) 10 – 45 (45) 

EA (kt/y) 5.1×10
-9
 – 180 (4.8×10

-5
) 71 – 10,000 (500) 

a 
M = molar mass, KAW = air-water partition coefficient, KOW = octanol-water partition 

coefficient, HL = half-life, EA = estimate of regional scale actual chemical emission rate 
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Figure Legends 

Figure 1: Schematic of the far-field human exposure model simulations highlighting the two 

human exposure potential metrics (light gray boxes, calculated using unit emission rates) and the 

two actual human exposure metrics (dark gray boxes, calculated using actual emission rate 

estimates). 

 

Figure 2: Relative ranking of 12,619 organic substances for far-field model estimates of intake 

fractions (iF), unit concentrations (CU), intake rates (iRA), and actual concentrations (CA). Black 

circles are the median values, the blue bars are the 2.5 percentiles, and the red bars are the 97.5 

percentiles. Note that the rankings (values on x-axis) are unique for each metric. 

 

Figure 3: Statistical summary for the contribution to variance (CV) of model input parameters on 

the calculated far-field human intake fractions (iF), unit concentrations (CU), intake rates (iRA), 

and actual concentrations (CA) for the 12,619 substances. Model input parameters are 

summarized in Table 1. 

 

Figure 4: Statistical summary of the modelled output confidence factors (Cf) for far-field human 

intake fractions (iF), unit concentrations (CU), intake rates (iRA), and actual concentrations (CA) 

for the 12,619 substances.  
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